A regularised EEG informed Kalman filtering algorithm
نویسندگان
چکیده
منابع مشابه
A regularised EEG informed Kalman filtering algorithm
The conventional Kalman filter assumes a constant process noise covariance according to the system’s dynamics. However, in practice, the dynamics might alter and the initial model for the process noise may not be adequate to adapt to abrupt dynamics of the system. In this paper, we provide a novel informed Kalman filter (IKF) which is informed by an extrinsic data channel carrying information a...
متن کاملKalman Filtering Algorithm in Presence of Outliers
A Kalman Filtering algorithm which is robust to observational outliers is developed by assuming that the measurement error may come from either one of two normal distributions and that transition between these distribution is governed by a Markov Chain. The state estimate is obtained as a weighted average of the estimates from the two parallel filters where the weights are the posterior probabi...
متن کاملEEG-fMRI Fusion of Paradigm-Free Activity Using Kalman Filtering
We address here the use of EEG and fMRI, and their combination, in order to estimate the full spatiotemporal patterns of activity on the cortical surface in the absence of any particular assumptions on this activity such as stimulation times. For handling such a high-dimension inverse problem, we propose the use of (1) a global forward model of how these measures are functions of the "neural ac...
متن کاملA Robust Speech Enhancement By Using Adaptive Kalman Filtering Algorithm
Speech enhancement aims to improve speech quality by using various algorithms. The objective of enhancement is improvement in intelligibility and/or overall perceptual quality of degraded speech signal using audio signal processing techniques. Enhancing of speech degraded by noise, or noise reduction, is the most important field of speech enhancement. In this paper a Robust speech enhancement m...
متن کاملKalman Filtering
Consider the following state space model (signal and observation model). Y t = H t X t + W t , W t ∼ N (0, R) (1) X t = F t X t−1 + U t , U t ∼ N (0, Q) (2)
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Signal Processing and Control
سال: 2016
ISSN: 1746-8094
DOI: 10.1016/j.bspc.2015.11.005